ELEMENTARY LINEAR ALGEBRA - SET 5

Vector spaces, linear independence, basis

1. Show that the vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$ and $v_{3}=(2,-1,1)$ are linearly independent in \mathbb{R}^{3}.
2. Show that the vectors $v_{1}=(1,2), v_{2}=(2,1)$ and $v_{3}=(1,0)$ are linearly dependent in \mathbb{R}^{2}.
3. Check if the vectors $v_{1}=(1,2,0), v_{2}=(-2,1,1), v_{3}=(-1,3,1)$ are linearly independent in \mathbb{R}^{3}.
4. Check if the following vectors span the space \mathbb{R}^{3} :
(a) $v_{1}=(1,1,0), v_{2}=(1,2,0), v_{3}=(0,0,1)$,
(b) $v_{1}=(1,2,3), v_{2}=(-1,-1,-3), v_{3}=(-1,1,-3)$,
(c) $v_{1}=(1,0,1), v_{2}=(0,1,1), v_{3}=(1,1,0), v_{4}=(1,1,1)$.
5. Check if vectors from Problem 4 form a basis in \mathbb{R}^{3}.
6. Check if the following sets of vectors form a subspace of \mathbb{R}^{3} :
(a) $W=\{t(1,1,1)+(0,1,2): t \in \mathbb{R}\}$
(b) $W=\{(x, y, z): x+y=z\}$
(c) $W=\{(x, y, z): x+y+z=1\}$
7. Determine the dimension of each of the following subspaces of \mathbb{R}^{4} :
(a) $W=\{(x, y, z, t): x+y=t\}$
(b) $W=\{(x, y, z, t): t=x+y, z=x-y\}$
(c) $W=\{(x, y, z, t): x=y=z=t\}$
8. Find the coordinates of the vector $v=(3,2,3)$ in the following bases in \mathbb{R}^{3} :
(a) $B=\{(1,0,0),(1,1,0),(1,1,1)\}$
(b) $B=\{(1,1,0),(1,1,1),(0,1,1)\}$.

Romuald Lenczewski

