ELEMENTARY LINEAR ALGEBRA – SET 5

Vector spaces, linear independence, basis

- 1. Show that the vectors $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 3)$ and $v_3 = (2, -1, 1)$ are linearly independent in \mathbb{R}^3 .
- 2. Show that the vectors $v_1 = (1, 2)$, $v_2 = (2, 1)$ and $v_3 = (1, 0)$ are linearly dependent in \mathbb{R}^2 .
- 3. Check if the vectors $v_1 = (1, 2, 0), v_2 = (-2, 1, 1), v_3 = (-1, 3, 1)$ are linearly independent in \mathbb{R}^3 .
- 4. Check if the following vectors span the space \mathbb{R}^3 :
 - (a) $v_1 = (1, 1, 0), v_2 = (1, 2, 0), v_3 = (0, 0, 1),$ (b) $v_1 = (1, 2, 3), v_2 = (-1, -1, -3), v_3 = (-1, 1, -3),$ (c) $v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (1, 1, 0), v_4 = (1, 1, 1).$
- 5. Check if vectors from Problem 4 form a basis in \mathbb{R}^3 .
- 6. Check if the following sets of vectors form a subspace of \mathbb{R}^3 :
 - (a) $W = \{t(1,1,1) + (0,1,2) : t \in \mathbb{R}\}$
 - (b) $W = \{(x, y, z) : x + y = z\}$
 - (c) $W = \{(x, y, z) : x + y + z = 1\}$
- 7. Determine the dimension of each of the following subspaces of \mathbb{R}^4 :
 - (a) $W = \{(x, y, z, t) : x + y = t\}$
 - (b) $W = \{(x, y, z, t) : t = x + y, z = x y\}$
 - (c) $W = \{(x, y, z, t) : x = y = z = t\}$

8. Find the coordinates of the vector v = (3, 2, 3) in the following bases in \mathbb{R}^3 :

- (a) $B = \{(1,0,0), (1,1,0), (1,1,1)\}$
- (b) $B = \{(1, 1, 0), (1, 1, 1), (0, 1, 1)\}.$

Romuald Lenczewski